极限

等价无穷小

sinxarcsinxtanxarctanxx\sin x \sim \arcsin x \sim \tan x \sim \arctan x \sim x

ln(1+x)ex11+x1xx\ln {(1+x)} \sim e^x - 1 \sim \sqrt{1 + x} - \sqrt{1 - x}\sim x

1cosxsecx1xln(1+x)12x21 - \cos x \sim \sec x - 1 \sim x - \ln {(1 + x)} \sim \frac{1}{2}x^2

1cosaxa2x21-\cos ^{a} x \sim \frac{a}{2} x^{2}

(1+x)a1ax(1 + x)^a -1 \sim ax

ax1xlnaa^x - 1 \sim xlna

loga(1+x)xlna\log a ^{(1 + x)} \sim \frac{x}{lna}

tanxxxarctanxx33\tan x - x \sim x - \arctan x \sim \frac{x^3}{3}

xsinxarcsinxxx36x - \sin x \sim \arcsin x - x \sim \frac{x^3}{6}

泰勒公式

ex=1+x+x22!++xnn!+o(xn)e^x = 1 + x + \frac{x^2}{2!} + ··· + \frac{x^n}{n!} +o(x^n)

11x=1+x+x2+...+xn+o(xn)\frac{1}{1-x}=1 + x + x^2 + ...+ x^n + o(x^n)

11+x=1x+x2+...+(1)nxn+o(xn)\frac{1}{1+x}=1 - x + x^2 + ...+ (-1)^nx^n + o(x^n)

(1+x)α=1+αx+α(α1)2!x2++α(α1)(αn+1)n!xn+o(xn)(1 + x)^\alpha = 1 + \alpha x + \frac{\alpha (\alpha - 1)}{2!}x^2 + ··· + \frac{\alpha (\alpha - 1) ··· (\alpha - n + 1)}{n!}x^n + o(x^n)

ln(1+x)=x12x2+13x3+(1)n1n+1xn+1+o(xn+1)\ln(1 + x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - ··· + (-1)^{n }\frac{1}{n+1}x^{n+1} + o(x^{n+1})

cosx=112!x2+14!x4+o(x4)\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + o(x^{4})

sinx=xx33!+x55!+o(x5)\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + o(x^{5})

tanx=x+x33+215x5+o(x5)\tan x = x + \frac{x^3}{3} + \frac{2}{15} x^5 + o(x^5)

arctanx=xx33+x55+o(x5)\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5}+ o(x^{5})

arcsinx=x+16x3+340x5+o(x5)\arcsin x = x +\frac{1}{6} x^{3}+\frac{3}{40} x^{5} + o(x^{5})

secx=1+12x2+524x4+o(x4)\sec x = 1+\frac{1}{2} x^{2}+\frac{5}{24} x^{4}+o(x^{4})

cscx=1x+16x+7360x3+o(x3)\csc x = \frac{1}{x}+\frac{1}{6} x+\frac{7}{360} x^{3}+o(x^3)

cotx=1x13x145x3+o(x3)\cot x = \frac{1}{x}-\frac{1}{3} x-\frac{1}{45} x^{3}+o(x^3)

其他

x>0x>0 时, ln(1+x)<x;sinx<x\ln (1+x)<x ; \quad \sin x<x

limx0\lim \atop {x \rightarrow 0}sinxx=1\frac{\sin x}{x}=1

limx0\lim\atop {x \rightarrow 0}(1+x)1x=e(1+x)^{\frac{1}{x}}=\mathrm{e}

limx\lim \atop {x \rightarrow \infty}(1+1x)x=e\left(1+\frac{1}{x}\right)^{x}=\mathrm{e}

limx0\lim \atop {x \rightarrow 0}ax1x=lna\frac{a^{x}-1}{x}=\ln a

limx\lim \atop {x \rightarrow \infty}nn=1\sqrt[n]{n}=1

limx\lim \atop {x \rightarrow \infty}an=1,(a>0)\sqrt[n]{a}=1,(a>0)

limx\lim\atop {x \rightarrow \infty}anxn+an1xn1++a1x+a0bmxm+bn1xm1++b1x+b0={anbm,n=m0,n<m,n>m\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{n-1} x^{m-1}+\cdots+b_{1} x+b_{0}}=\left\{\begin{array}{ll}\frac{a_{n}}{b_{m}}, & n=m \\ 0, & n<m \\ \infty, & n>m\end{array}\right.

x+x \rightarrow+\infty
lnαxxβax, 其中 α>0,β>0,a>1\ln ^{\alpha} x \ll x^{\beta} \ll a^{x}, \text { 其中 } \alpha>0, \beta>0, a>1
xx \rightarrow \infty
lnαnnβann!nn,α>0,β>0,a>1\ln ^{\alpha} n \ll n^{\beta} \ll a^{n} \ll n ! \ll n^{n}, 其中\alpha>0, \beta>0, a>1

limn\lim \atop {n \rightarrow \infty} a1n+a2n++amnn=a\sqrt[n]{a_{1}^{n}+a_{2}^{n}+\cdots+a_{m}^{n}}=a


本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,文章禁止转载!